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HYDROGEN MASER : A C T I V E  OR PASSIVE  ? 
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Abstract.- I t  is shown that ,  for  a specified interrogation scheme of the 
atomic t rans i t ion ,  the cavity pulling factor of passively operated masers i s  
the same as for actively operated ones. 
The power spect ra l  density of frequency fluctuations of passive masers is gi- 
ven fo r  a specified atomic l ine  interrogation scheme. 
The e f fec t  of spin exchange l ine  broadening on the frequency s t a b i l i t y  capabi- 
l i t y  of passive and active masers is  specified. I t  is shown that  it ex i s t s  
an optimum value of the atomic flux intensity.  Design cr i ter ious  are specified. 
The frequency s t a b i l i t y  capability of presently designed small or  large s ize  
hydrogen masers i s  compared when operated e i the r  actively o r  passively. I t  is 
shown t h a t  large s ize  active masers cannot be surpassed, as long as  ultimate 
frequency s t a b i l i t y  is considered. 
The e f fec t  of temperature on frequency s t a b i l i t y  i s  specified. 

1.Introduction-The aim of th i s  paper is t o  compare the frequency s t a b i l i t y  capabili- 
t i e s  of actively and passively operated hydrogen masers. We w i l l  consider 

(1) i) Hydrogen masers of c lass ica l  design with a f u l l  s i ze  microwave cavity . 
I n  the following, they w i l l  be denoted as "large s i ze  hydrogen masers", 
and 

ii) Hydrogen masers with a microwave cavity of reduced s i ze ,  loaded with a - - 

high permitt ivity d ie l ec t r i c  medium (2'3) , o r  with in ternal  capacitors (4r5! 
They w i l l  be labelled a s  "small s i ze  hydrogen masers". Due t o  the losses 
of the materials introduced i n  the cavity, they are operated e i the r  as 

passive devices ( 2 ) 1  or  as active ones, but  with electronically achieved 

enhancement of the cavity quali ty factor (617) - - 

The reported work has been in i t i a t ed  e a r l i e r  ( 8 ) ,  i n  the case of passively 
operated masers. I t  is  completed here by the consideration of the spin exchange 
l ine  broadening, and of a more r e a l i s t i c  frequency modulation scheme for  the inter-  
rogation of the atomic transit ion.  

In  our comparison we w i l l  only be in teres ted  i n  the ultimately achievable 
medium and long term frequency s t ab i l i t y .  We w i l l  then focus on the e f fec t  of ther- 
mal noise inside the microwave cavity on the white component of the power spect ra l  
density of frequency fluctuations. Although introduced when necessary, the e f fec t  of 
noise added by the microwave amplifiers coupled t o  the microwave cavity is  not  con- 
sidered as a fundamental source of frequency s t a b i l i t y  limitation. This is  jus t i f ied  
by continual progress i n  the reduction of the noise figure of these amplifiers. 
S.I. Units are used throughout th i s  paper. 

- - -- 
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2. In te r roga t ion  o f  t h e  atomic t r a n s i t i o n  i n  a passive maser.- There a re  severa l  
poss ib le  ways t o  i n t e r r o g a t e  the  atomic t r a n s i t i o n  i n  a passive maser. We w i l l  only 
consider here t h e  very convenient f a s t  frequency modulation method ( 2 t 9 )  , which 
gives access t o  the  atomic dispersion l i n e .  

The frequency modulated microwave s i g n a l  i n j e c t e d  i n t o  the  maser cav i ty  is  
represented by t h e  following equation : 

where p denotes t h e  amplitude o f  the  s i g n a l ,  w i s  t h e  angular frequency of  the car- 
r i e r ,  w is  the modulation angular frequency, m is  the frequency modulation index m 
and J is  the Bessel funct ion of  o rder  n. n 

The amplitude p is  defined (8)(10) i n  such a way t h a t  it is  not  required t o  
specify the  coupling f a c t o r  of  the i n p u t  loop. 

A t  t h e  output  p o r t  of the maser, t h e  t ransmit ted s i g n a l  i s  proport ional  t o  : 
- - 

j u t  jnw t 
wt = p e 1 .In) J~ (m) e (2) 

n=-m 
where G(") i s  the  complex gain of the atomic medium, i n s i d e  t h e  microwave cav i ty ,  
a t  frequency w '  = w + nu,. 

A t  a given angular frequency w ' ,  t h i s  gain G is given by (10) 

where b is t h e  amplitude of  the  atomic response and i ts phase f o r  a s inuso ida l  
e x c i t a t i o n  of  amplitude p ' .  We have : 

G =  f ~ ~ ~ ( e ' c o s y  b + j p ' s i n v )  
b 

where cos 'Q and E' s i n  y a r e  given i n  reference 10, such a s  : 
b b 

is the microwave cav i ty  angular resonance frequency, T is the microwave cav i ty  
&me constant ,  TI and T a r e  longi tud ina l  and t ransverse gelaxat ion times of hy- 

2 
drogen atoms, respect ively,and cc a parameter, which is un i ty  a t  o s c i l l a t i o n  thres-  
hold, given, i n  S.I. u n i t s ,  by : 

where u is the magnetic permeability of vacuum, ug is  Bohr magne,ton, fi is Planck 
constan? divided by 2a, q is the  f i l l i n g  f a c t o r ,  as  defined i n  reference 1,  Vc i s  
the volume o f  the  microwave cav i ty ,  Q i s  the q u a l i t y  f a c t o r  of  the cav i ty  
(Qc = wcTc/2) and I is t h e  f lux  of hy&ogen atoms en te r ing  the  bulb i n  t h e  s t a t e  

F = 1 ,  mF = 0 .  

The s i g n a l  w is  amplified,then r e c t i f i e d  i n  a square law de tec tor  and f i -  
n a l l y  it is  demodulsted by mul t ip l ica t ion  by s i n  w t. The e r r o r  s i g n a l  V is  the 
d.c. component of the output  s i g n a l  of the demodulztor. It is  then given by : 

* 
V = C wt wt s i n  w t m 

where C is a constant.  The b a r  means time averaging. 



I t  w i l l  be assumed i n  t h e  following t h a t  i) the  angular frequency difference 
w - w is much smaller  than the atomic linewidth and i i )  the angular frequency modu- 

0 

l a t i o n  urn is much l a r g e r  than the atomic linewidth. 

I t  then comes, from equations 2 ,  4 ,  5 ,  6 and 8 : 

where G and S a re  t h e  gain and the  s a t u r a t i o n  f a c t o r  respec t ive ly ,  f o r  the c a r r i e r  
0 

component of the in te r roga t ion  s i g n a l  of amplitude p '  = p J  (m) a t  frequency 
( ,) '=( , )=, , ,  

0. 

3.  Cavity pul l ing.-  I n  a steady s t a t e  regime of  the frequency cont ro l  loop of  t h e  
quar tz  c r y s t a l  o s c i l l a t o r ,  t h e  e r r o r  s i g n a l V  is  zero. We then have : 

W-W T 
0 C p = - = -  

P wc-W 
(10) 

T2 

where P i s  the cavi ty p u l l i n g  f a c t o r  of  a passive maser, with the  spec i f ied  i n t e r -  
rogatioR scheme. 

Equation 10 shows t h a t  t h i s  cav i ty  p u l l i n g  f a c t o r  is  the  same as  f o r  an a c t i -  

vely operated maser ( ' I ,  a r e s u l t  which has been i n f e r r e d  experimentally by F.L. 

Walls and D.A. Hwe (''I. The following d i f f e r e n t  r e s u l t  was given e a r l i e r  ( 8 )  

It i s  v a l i d  i n  d i f f e r e n t  condit ions,  when the  atomic dispersion l i n e  is observed 
using a purely s inuso ida l  in te r roga t ion  s igna l .  This confirms t h a t  cav i ty  p u l l i n g  

f a c t o r s  (I0) depend on the  p a r t i c u l a r  method used t o  in te r roga te  t h e  atomic t rans i -  
t ion.  

Equation 10 has been checked experimentally. For t h a t  purpose, a quar tz  crys- 
t a l  o s c i l l a t o r  has  been frequency locked to  a pass ive ly  operated la rge  s i z e  hy- 
drogen maser, a s  depicted on f igure  1. The in te r roga t ion  s i g n a l  is s inuso ida l ly  
frequency modulated. 

Experimental set-up f o r  t h e  
measurement of  the  cav i ty  
p u l l i n g  f a c t o r  of  a passively 
operated H-maser. 

Frequency 
Control 

I I 
Synchronous Low-Pass Square Ware 

Integrator 
Detector Filler Detector 
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~i re 2 shows t h a t  the cav i ty  p u l l i n g  f a c t o r  has  t h e  expected value and 
does n o t  g p e n d  on a, f o r  S << 1. I t  has a l s o  been checked t h a t  changes of  the  sa- 
t u r a t i o n  f a c t o r  S , and of  ?.he modulation index m does no t  modify the value of  P 

P' 

Comparison of t h e  cav i ty  p u l l i n g  f a c t o r  P 
of a pass ive ly  operated maser (with 
S << 1 and m = 0.1) t o  t h e  cav i ty  p u l l i n g  
f g c t o r  P o f  the same maser b u t  operated 
act ively? P is  s e t  equal t o  t h e  r a t i o  of 
separa te ly  a measured values o f  T and T2 

n 

4. Frequency s t a b i l i t y  of  a pass ive ly  operated hydrogen maser.- 

4.1. P m e r  s p e c t r a l  dens i ty  of  ~f~e_qu~gcy-fl_u~tuat ions.-  A s  previously (8 ) ,  we 
assume t h a t  thermal noise i n  t h e  microwave cav i ty  useful  mode is  c rea ted  by an ap- 
propr ia te  noise generator  coupled t o  a dummy microwave cavi ty.  The ou tpu t  s igna l  
then becomes : 

where p I n )  + j p l ( n )  represents  the  complex amplitude of t h e  uncorrelated thermal 
2 

noise components i n  t h e  microwave cav i ty ,  a t  frequencies close t o  W + w  Simi la r i ly ,  m . 
jp '2 (n)  denotes the  add i t ive  no ise  components at tached t o  the  microwave 

receiver .  

The one-sided power s p e c t r a l  dens i ty  (P.S.D.) of these components a r e  given 
by : 

1 1 kT 
- S  (n)  = - S  (n) = 4 -  
b2 '1 b2 p2 P (13) 

and 
1 7 s (n)  = L- S ( n ) = 4 -  k~ - Qext (F-1) 

P ' I  b2 ~ ' 2  Qc 

where k is Boltzman constant,  T is  t h e  absolute  temperature o f  the cav i ty ,  P is 
the  power d i s s i p a t e d  i n  t h e  microwave cav i ty  a t  frequency w = w or  Qext and Qc a r e  

the e x t e r n a l  and loaded cav i ty  q u a l i t y  f a c t o r ,  respect ively,  and F is t h e  noise 
f a c t o r  of t h e  microwave receiver .  

The one-sided P.S.D. o f  f r a c t i o n a l  frequency f luc tua t ions  S (£1 = h of the  
control led quar tz  c r y s t a l  o s c i l l a t o r  then possesses two componentsYdetermi%ed by 
thermal noise i n  the  maser cav i ty ,  and by added rece iver  noise,  respect ively.  It  
can be shown t h a t  we have* r - 

8kT 
h (maser) = - - - 

fiuO3 T~ a2s0 KQc =Ill 

- - - - - 

* I n  reference 8, t h e  contr ibut ion of noise a t  frequencies w + 2% i s  missing. 



with 

1 J (m) 2 
Cm= (2J12 ( m ) + [ ~ ~ ( m ) -  _ I ( (~ l  (m) -J3(m) +(J2 (m)-J4(m) ) +. . . 

2Jo (m) J 
(m) Go Go 

(16) 
and T ( 1 + ~ ~ ) '  

8kT 1 h (receiver)  = - - - K Qext(F-1) Cr 

with 

In  the  following, we w i l l  focus on t h e  e f f e c t  of  thermal noise i n  the  maser 
cavi ty.  We w i l l  thus determine the  u l t imate  frequency s t a b i l i t y  capabi l i ty  of  a pas- 
s i v e l y  operated maser. Expected progress  i n  t h e  no ise  f a c t o r  ampl i f ie r s  j u s t i f i e s  
the assumption made. 

Equation 16 shows t h a t  it e x i s t s  an optimum value m of t h e  modulation 
opt  

index m, which depends on G However, it can be shown t h a t  f o r  Go c lose t o  un i ty ,  
0- 

we have m = 1.1 and Cm " 4.1 and f o r  the  o ther  extreme case Go >> 1 ,  we have 
OP t 

m " 1.1 and C m =  4.3. We then assume m = 1.1 and s e t  Cm = 4 i n  equation 15. 
o p t  

W e  a l so  set  So = 1, which is  the  optimum value of the  s a t u r a t i o n  f a c t o r  f o r  Go " 1 
and Go >> 1. 

The lower l i m i t  of t h e  P.S.D. of a pass ive ly  operated hydrogen maser is  then 

4.2. E_ffZect o f  spkn exchange l i n e  b r o a d e n i n g .  Relaxation times T and T2 
depend on the  atomic beam f l u x  I v i a  H-H c o l l i s i o n s  i n  the  s to rage  bulb.' This  
e f f e c t  was f i r s t  considered i n  reference 1. We then have : 

with 2 
T = (TlIo (T2Io 

where (T ) and (T2)o a r e  longi tud ina l  and t ransverse re laxa t ion  times f o r  I = 0, 
l o  

respect ively.  q i s  the sp in  exchange maser parameter and I i s  t h e  threshold ato- 
mic f lux  f o r  very small values of  q. These two q u a n t i t i e s  th a r e  defined as  (1) : 
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- 
a is  the s p i n  exchange cross-section, vr is the  average r e l a t i v e  hydrogen ve loc i ty ,  
T i s  the bulb s to rage  time cons tan t ,  Vb is the s torage bulb volume and I is  the 
b t o t  

t o t a l  f l u x  en te r ing  the bulb. 

It comes, from equations 7, 19, 20 and 21 : 

with 

Figure 3 shows the  v a r i a t i o n  of H versus I/I f o r  d i f f e r e n t  values of 
P t h  

the parameter q. One sees  t h a t  f o r  each value of  q ,  the re  is  a value of  the  atomic 
f lux  which minimizes the P.S.D. of f r a c t i o n a l  frequency f luc tua t ions .  The locus 
of the  minimum of H occurs f o r  an optimum value of  1/1 given by the following 
equation : P t h  

- 0.845 
I opt  " - 

I t h  9 
and we have : 

H (min.) 2 379 q 
2 

P 

Variat ion of H (q, 1/1 ) 
P t h  

versus I/Ith f o r  d i f f e r e n t  va- 

lues  o f  the parameter q. The 
dot ted l i n e  represents  the  
threshold condit ion of  o s c i l -  
l a t i o n  and t h e  t h i n  l i n e  repre- 
s e n t s  the locus of  the minima 
of H . 

P 



A t  the  minimum of  H , one a l s o  has : 
P 

a = 0.17/q 

I t  comes from equations 23, 25 and 28 : 

The d e s i  n goal of  passively operated hydrogen masers i s  then t o  make the quant i ty  9 f n~~~~ a d v b  a s  small a s  possible .  

In  add i t ion ,  it can be derived,  from equations 23, 24 and 27 t h a t  t h e  o p t i -  
mum value of  t h e  atomic f l u x  is the following : 

v 
b I l  I ( o p t . )  = 1.69 = -- (31) 

UVr I t o t  *bTt 

Table 1 shows t h e  ul t imate frequency s t a b i l i t y  capabi l i ty  of  p resen t ly  de- 
s igned passive hydrogen masers. I t  is  denoted 0 (T) , and ca lcu la ted  f o r  T = 100 s. 

Y 

TABLE 1. A Comparison between act ively  and 
passively operated masers. 

vc 

"b 

17 

Qo 

Qc 

17Qc/vc 

9 

Tt 

Ith 

1/1& (opt) 

I (opt) 

Ha(opt) 

H (opt) 

ho 

a (T = 100 S) 

0' (T = 100 5) 
Y 

* .  Wrth a sapphire loaded cavity ( 3 ) ,  with 
Qc = 8 500, i t  comes U (T = 100 s )  = 2.1 x 10-l4 

Large s i z e  maser 

Active 

15.5 x 

2.35 

2.8 

60 000 

45 000 

8.1 x lo6  

0.058 

0.4 

7.5 x l o l l  

15.4 

1.1 

0.35 

1.4 

2.6 x 10-l5 

2.6 x l 0 l 5  

Small s i z e  maser 

Passive 

15.5 

2.35 x 

2.8 

60 000 

30 000 

5.4 x 10 
6 

0.087 

0.4 

1.1 x 10l2  

(a = 1) 1.4 

1.5 x lo i2  

- 
15 

3.8 x 

1.4 x 1 0 - l ~  

2.4 x 

Cavity loaded 

with alumrna* 

2.3 

1.15 

0.5 

6 000 

3 000 

6.5 x 10 
5 

1.44 

0.2 

3.7 l o i3  

0.59 

2.2 lo i3  

786 

2.4 x 

3.5 1 0 - l ~  

6 x 

(passive) 

Cavity loaded 

with capac~tors  

2.35 

0.93 x 

(q1=0.5) 1.25 

13 000 

6 500 

3.4 x lo6 

0.34 

0.2 

7 x 10l2  

2.5 

1.7 x 10 
13 

- 
44 

7.1 x loez6 

1.9 x 10-l4 

3.2 
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5. Frequency s t a b i l i t y  of  an a c t i v e l y  operated hydrogen maser. - The one-sided 
P.S.D. of  f r a c t i o n a l  frequency f luc tua t ions  of  an ac t ive ly  operated hydrogen maser 
i s  given, f o r  Fourier  frequencies f smaller  than the microwave cav i ty  band- 

width by (12) (13) (14) . 
f 2  

S ( f )  = * + [l + (F-1) &] - 2) 
Y P 4Q: 

(32 
Qc Vo 

where QR = W T /2 and v is  the  t r a n s i t i o n  frequency. 
0 2 

We w i l l  only consider h , t h e  white frequency component of S (f), which deter-  
0 Y 

inines the medium term frequency s t a b i l i t y R  and, hopefully (I5)  long term f r e q ~ e n c y  
s t a b i l i t y  i n  the absence of  d r i f t  i n  the cav i ty  frequency. One then has : 

The v a r i a t i o n  of P versus I/Ith is  given i n  reference 1 as  : 

with 1 
P = - ktuo Ith 

c 2 

I t  r e s u l t s  from equations 21, 33 and 34, t h a t  t h e  e f f e c t  o f  s p i n  exchange 

l i n e  broadening (I6)  upon the  value of  h can be  wr i t t en  a s  : 
0 

with 

8kT h =- 2 "Qc 

W 
0 

Figure 4 shows t h e  v a r i a t i o n  of H versus I/I f o r  d i f f e r e n t  values of  the  
a t h  

parameter q. Again, f o r  each value of q 0, t h e r e  i s  a value of the atomic f l u x  
which minimizes t h e  P.S.D. of f r a c t i o n a l  frequency f luc tua t ions .  The locus o f  the 
minimum of H is  defined such a s  : 

and we have : 

*1t is  w i t h  not icing t h a t  ho does n o t  depend on the  rece iver  noise f a c t o r ,  f o r  a c t i -  
vely operated masers. 



Variat ion of Ha(q, l / I th )  

versus 1/1 f o r  d i f f e r e n t  
t h  

values o f  t h e  parameter q. 
The t h i n  l i n e  represents  the 
locus of  the  minima of H 

It comes, with equat ions 23, 36 and 39 : 
T I 

kT - b t o t  1 1 h (min.) = 16 3 0 vr T - - - 
g " ~  t I "b q2-6q+l - 

This equation shows t h a t  t h e  white frequency noise of  ac t ive ly  operated masers is  
small  i f  V is large" and q a s  small  as  possible .  However, the  change of h ( d n )  b 0 

with q  i s  small  as long a s  q < 0.05. 

The optimum value of the atomic f l u x  is  given by : 

where the quant i ty  1-q/l+q does no t  change much i n  the  range 0 < q <  0.172 i n  which 
the  maser is able  t o  o s c i l l a t e  ( I ) .  

Table 1 shows t h e  r e l a t e d  frequency s t a b i l i t y  capabi l i ty  of  a l a r g e  s i z e  
maser of c l a s s i c a l  design. 

* One should not ice the i n t e r e s t  of the elongated bulb and cav i ty  design by H.E. 

Pe te rs  ( I 7 ) ,  which enables  t o  increase  t h e  bulb volume. 
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6. A comparison o f  the  frequency s t a b i l i t y  capabi l i ty  of  ac t ive ly  and p a s s i v e l y  
operated masers.- We apply the  above r e s u l t s  t o  e s t a b l i s h  a comparison between 

the ul t imate medium and long term frequency s t a b i l i t y  c a p a b i l i t i e s  U ( T )  = (h /2T) 1/2 
v 0 

of some presen t ly  designed hydrogen masers. 

We consider 
i )  a l a r g e  s i z e  hydrogen maser i n  which only a hydrogen s to rage  bu lb  (with a 

diameter of about 16.5 cm) is  included i n  the microwave cav i ty  ; we w i l l  assume t h i s  
maser e i t h e r  ac t ive ly ,  o r  pass ive ly  operated ( b u t  very close t o  o s c i l l a t i o n  thres-  
hold i n  the  second case) ,  

ii) small s i z e  hydrogen maser with a microwave cav i ty  loaded e i t h e r  by alumi- 

na ( 2 )  o r  by i n t e r n a l  capaci tors  (5 )  

We assume t h a t  we have : U = 23.5 x 10 -20 m2 a t  room temperature (18) (19) 
1 

Tb/Tt = 1.3, I /I = 2 and t h a t  t h e  output loop is  c r i t i c a l l y  coupled f o r  passive 
t o t  

masers. 

Table 1 shows the  p e r t i n e n t  parameters and the expected ul t imate frequency 
s t a b i l i t y  measure U f o r  'r = 100 s. Receiver noise degrades t h e  considered f re -  
quency s t a b i l i t y  of  passive masers only. The frequency s t a b i l i t y  capabi l i ty  
f igure  0' , given i n  Table 1 ,  is  then obtained f o r  F = 2 and Q = 2Qc. 

Y e x t  
The following conclusions can be made : 
i )  experimentally measured frequency s t a b i l i t y  of ac t ive ly  operated hydrogen 

masers is close (within a f a c t o r  of  2 )  t o  t h e  ul t imate frequency s t a b i l i t y  capabi- 
l i t y  i n  t h e  white frequency noise region (I3)  ( I 4 )  ; t h e  same conclusion can be 
derived f o r  the white phase noise region. 

i i )  except  f o r  laboratory t e s t i n g ,  there  i s  no i n t e r e s t  t o  opera te  passively,  
a l a r g e  s i z e  H-maser, within condit ion a < 1. 

iii) measured frequency s t a b i l i t y  of passive small  s i z e  masers (20) is  a l s o  
close (within a f a c t o r  of  2)  t o  the u l t imate  frequency s t a b i l i t y  capabi l i ty ,  

i v )  the  optimum value o f  the  atomic f l u x  i n t e n s i t y  is  s l i g h t l y  l a r g e r  f o r  
small s i z e  passive masers than f o r  l a r g e  s i z e  a c t i v e  masers and 

V) p resen t ly  designed small  s i z e  passive masers cannot compete with l a r g e  
s i z e  masers, as long as frequency s t a b i l i t y  is concerned. - 

The value o f  t h e  spin-exchange parameter q varying a s  u v this value w i l l  
rf  

be d r a s t i c a l l y  reduced (I8) i n  low temperature masers ( I 6 )  (21) s o  t h a t  smal l  s i z e  
hydrogen masers w i l l  very l i k e l y  be ab le  t o  o s c i l l a t e  i n  such conditions. Equation 
40 shows t h a t  f o r  q 6 0.05, the frequency s t a b i l i t y  capabi l i ty  U-*(T) of  an ac t ive  

luaser s c a l e s  as T3/4(U/V One may then expect a spectacu1a;frequency s t a b i l i t y  
improvement of 2 o r  3 or8ers  of  magnitude a t  low temperature. Possible  frequency 
s t a b i l i t y  l i m i t a t i o n  by quantum noise should then be considered. 

7. E f f e c t  o f  c a v i t  u a l i t  f a c t o r  enhancement on the f r e  uen s t a b i l i t  .- Small 
s i z e  hydrogen mase:sqhave bYeen operated a c t i v e l y  by enhanzing%cticifial:y (6) ( 7 ) ,  
by e l e c t r o n i c  means, t h e  cav i ty  q u a l i t y  fac tor .  The ques t ion  then a r i s e s  of t h e i r  
frequency s t a b i l i t y  capabi l i ty  compared t o  t h a t  of the  same device, b u t  operated 
passively.  

Qual i ty  f a c t o r  enhancement increases the  noise temperature TIe of t h e  cav i ty  
when a feedback loop is  used, we have (22)  : 

where Qe and Qo a r e  the  enhanced and unloaded cav i ty  q u a l i t y  f a c t o r s ,  respec t ive ly ,  

B1 is  the coupling f a c t o r  of  t h e  loop connected t o  the  input  of the microwave am- 

p l i f i e r ,  G is  the gain introduced t o  achieve the  value Q o f  the q u a l i t y  f a c t o r  and 
F is t h e  no ise  f igure  of the  amplif ier .  It has been assuged t h a t  t h e  microwave ca- 
v i t y  and t h e  amplif ier  a r e  a t  t h e  same temperature. 



Neglecting the  noise added by e l e c t r o n i c  components which provide Q-enhance- 
ment, the cav i ty  noise temperature becomes T given by : 

n e 

Equation 43 merely means t h a t  thermal energy o f  the cavi ty mode being d i s t r i b u t e d  
over a smaller  bandwidth, i t s  P.S.D. i s  increased accordingly. 

I t  i s  easy t o  s e e  t h a t  equation 36 then becomes : 

where H is  given by equation 37, b u t  with the  values of q and Ith which are  
re la tedare  t o  Qe. 

Equation 44 has been appl ied t o  p resen t ly  designed small s i z e  hydrogen masers, 
with c h a r a c t e r i s t i c  parameters as given i n  Table 1 ,  except f o r  t h e  cavi ty q u a l i t y  
f a c t o r  : one assumes now t h a t  the cav i ty  is  coupled t o  ex te rna l  c i r c u i t s  with two 
loops having coupling f a c t o r s  B1 = B2 = 0.2. Figure 5 shows t h a t  t h e r e  is  an opt i-  
mum value o f  Qe. 

Ultimate frequency s t a b i l i t y  
capabi l i ty  q-, f o r  T = 100 s 

Y 
of p resen t ly  designed small 

I 1 s i z e  masers, versus the  
enhanced cav i ty  q u a l i t y  fac- 

0 t o r  Qe. 

a. microwave cav i ty  loaded 
with aluminia 

10-1~ with capaci tors .  

Fig. 5 

Table 2 summarizes the r e s u l t s .  It includes t h e  value of  t h e  frequency s t a -  
b i l i t y  measure U' (100 s) when the  e f f e c t  of noise of  the  ampl i f ie r ,  included i n  
the feedback loopY (cf .  equation 42) ,  is taken i n t o  account with F = 2. 

TABLE 2. Frequency s t a b i l i t y  capabi l i ty  of  small s i z e  
hydrogen masers operated ac t ive ly  with enhanced cavi ty 
q u a l i t y  fac tor .  

Qc 

Qe (op t  

0 (100 S) 
Y 

u' ( IOOS) 
Y 

aluminia loaded 
cav i ty  

4 300 

50 000 

1.6 x lo-14 

2.6 x 10-l4 

capaci tor  loaded 
cavi ty 

9 400 

25 000 

7.8 x 10 -15 

1.1 10-l4 
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Comparison of r e s u l t s  given i n  Tables 1 and 2 shows t h a t  one may expect  an 
improvement (by a f a c t o r  of  2 t o  3) i n  t h e  ul t imate frequency s t a b i l i t y  of small 
s i z e  hydrogen masers when operated ac t ive ly  v i a  Q-enhancement. However, the  cav i ty  
p u l l i n g  f a c t o r  w i l l  be increased accordingly. 

8. Conclusion.- The major conclusion of  t h i s  work is  t h a t  l a rgd  s i z e  ac t ive  masers 
remain. , a t  p resen t ,  t h e  atomic frequency standardsof the b e s t  frequency s t a b i l i t y  
capabi l i ty .  One o f t e n  ob jec t  aga ins t  t h e i r  r e l a t i v e l y  poor long term frequency s t a -  
b i l i t y .  However, no se r ious  attempt has been made t o  operate  an e f f i c i e n t  cav i ty  
auto-tuning system. I t  has been shown both t h e o r e t i c a l l y  ( I5 )  and experimentally (6) 
t h a t  the  b e s t  s o l u t i o n  of  t h i s  problem would be t o  use a f a s t  auto-tuning system 
s i m i l a r  t o  t h a t  assoc ia ted  with passive masers. One may then expect  t h a t  the  frac-  
t i o n a l  frequency s t a b i l i t y  measure 0 (T) = (ho/2r) 'I2, with ho given by equation 40 

Y 
w i l l  be achieved f o r  very la rge  values of 'r, l a r g e r  than s e v e r a l  days. 

The frequency s t a b i l i t y  improvement which may be expected from low tempera- 
t u r e  masers has been pointed out .  
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